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The Cost of Uncertainty in Curing Epidemics
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Motivated by the study of controlling (curing) epidemics, we consider the spread of an SI process on a known
graph, where we have a limited budget to use to transition infected nodes back to the susceptible state (i.e., to
cure nodes). Recent work has demonstrated that under perfect and instantaneous information (which nodes
are/are not infected), the budget required for curing a graph precisely depends on a combinatorial property
called the CutWidth. We show that this assumption is in fact necessary: even a minor degradation of perfect
information, e.g., a diagnostic test that is 99% accurate, drastically alters the landscape. Infections that could
previously be cured in sublinear time now may require exponential time, or orderwise larger budget to cure.
The crux of the issue comes down to a tension not present in the full information case: if a node is suspected
(but not certain) to be infected, do we risk wasting our budget to try to cure an uninfected node, or increase our
certainty by longer observation, at the risk that the infection spreads further? Our results present fundamental,
algorithm-independent bounds that tradeoff budget required vs. uncertainty.

CCS Concepts: • Information systems → Process control systems; • Mathematics of computing →
Network flows; Graph algorithms; Stochastic processes;

Additional KeyWords and Phrases: contagion; contact process on graph; controlled SI model; time to extinction;
partial information

ACM Reference Format:
Jessica Hoffmann and Constantine Caramanis. 2018. The Cost of Uncertainty in Curing Epidemics. Proc. ACM
Meas. Anal. Comput. Syst. 2, 1, Article 31 (June 2018), 33 pages. https://doi.org/10.1145/3219617.3219622

1 INTRODUCTION
Epidemic models are used across biological and social sciences, engineering and computer science,
and have had important impact in the study of the dynamics of human disease, computer viruses,
but also trends rumors, viral videos, and most recently the spread of fake news of social networks.
Their history in the literature dates to the first mathematical model of epidemics by Bernoulli in
1760 [4]. In this paper, we focus on epidemics propagating on a graph, as introduced by the seminal
paper [21]. In particular, we consider so-called SI models (see below for a precise definition) where
an infected node can only propagate the infection to its non-infected neighbor, as opposed to the
fully mixed models considered in the early literature. This graph-based approach provides a more
realistic model, in which the spread of the epidemic is determined by the connectivity of the graph,
and accordingly some nodes may play a larger role than others in the spread of the infection.
At any point in time, the state of an SI-type epidemic on a graph is given by the list of nodes

on the graph that are infected, and their relative topology (position) in the graph. Having a good
estimate of the state is critical, as it determines the dynamics of the spread of the epidemic into the
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future. As a simple example, we can ask what the spreading rate is on an N -node line graph of an
infection with N /2 infected nodes. If those nodes are contiguous, then it will take O (N ) time for
the epidemic to spread to the entire graph. If every other node is infected, it will take O (1) time.
If we have access to the status of each node (infected or not), then we know the state exactly.

Much work has focused on the state estimation problem, in the setting where only noisy information
is available. Indeed, work in [18–20], [1–3], and elsewhere, considers a setting where only noisy
observations of the status of each node are possible, and even answering whether there is an
epidemic or not is a challenge. Those and related works, as we discuss in more detail below, focus
on the problems related to epidemic state estimation, and do not consider the control problem of
curing the epidemic.
On the other side, the problem of curing an epidemic with a limited budget, but with perfect

observation (i.e., perfect knowledge of the state at each point in time), has been recently considered
in [8, 10]. Their budget, as we explain more precisely further below, is essentially a bound on the
curing effort they can expend at a given time (as opposed to total curing effort over time). In this
setting, the problem is to optimize the allocation of the curing budget across nodes at every point
in time. They characterize the budget required for fast curing, as a function of a combinatorial
property of the graph – its CutWidth (we define this below).

The problem of curing an epidemic with a limited budget and partial observation of the state of
the epidemic (i.e., which nodes are infected and which are not) introduces a fundamentally new
element to the problem. Indeed, this interaction represents a fundamental tension: our estimate of
the state of a node improves the longer we observe it, and so the longer we wait to cure a node, the
less likely we are to waste precious curing resources on non-infected nodes. On the other hand,
the longer an infected node remains untreated, the more the epidemic spreads. To the best of our
knowledge, no work has successfully attacked the problem of curing an epidemic with a limited
budget and partial observation of the state of the epidemic (i.e., which nodes are infected and which
are not). Our work considers precisely this problem, and therefore, broadly speaking, is about the
interaction of – specifically, simultaneous – learning and control.

By considering learning the state and controlling the epidemic simultaneously, we prove a lower
bound that shows (see Section 5 for precise result) that partial information can have a dramatic
impact on the resources (either time or budget) required to cure an infection: even with slightly
imperfect/incomplete information, the time to cure a particular graph may increase exponentially,
unless the budget is also significantly increased. Concretely, we show that if instead of receiving
the state of each node at each point in time, we receive a slightly noisy (e.g., only 99% accurate)
guess of the state, then there is no constant factor of the CutWidth which is sufficient for any
algorithm to cure the epidemic in linear (expected) time.

1.1 Related Work and Background
Detecting an epidemic, as well as its location, under noisy data, has been well-studied in [1], in
the context of detecting a multidimensional anomalous cluster, with time playing the same role
as any other dimension. Graph-specific epidemic detection has been further studied by [26], with
constraints based on the cut of this anomalous cluster. [20] study the detection of epidemic-specific
clusters by detecting the shapes which arise specifically when there is an epidemic. The focus in
those works has been to understand the limit of information required in order to detect the epidemic.
More generally, inverse problems have also been of interest, especially source detection [23–
25, 27, 28] or obfuscation [11, 12].
In our work, we adopt a much stronger observation model than in the papers listed above;

our negative result establishes, however, that controlling the epidemic is impossible with weaker
information than the threshold we characterize.
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In [8, 9], the authors tackle the problem of curing graphs with perfect knowledge of the state
of each node, constrained by a budget which corresponds to the speed at which the nodes are
cured. Their results show that there exists a threshold phenomenon: for any given graph, if the
curing budget is lower than a combinatorial quantity of the graph called the CutWidth, the curing
time is exponential; if it is higher, they exhibit a strategy to cure any graph in sublinear time. The
CutWidth captures a key bottleneck in curing, and is important in our work as well. Therefore it
is useful to define this precisely now.

Definition 1.1. Given a graph G = G (V ,E), and any subset of the nodes, S ⊆ V , the Cut of S is
the number of edges crossing from S to Sc . Given any sequence of |V | + 1 subsets S0, . . . , S |V | such
that S0 = ∅, S |V | = V , and Sk and Sk+1 differ by the addition of a single node (called a crusade in
[8, 9]), the cut of the sequence is the largest cut of any of the sets Sk . The CutWidth of a graph is
the minimum cut of any sequence satisfying the above properties.

Intuitively, the CutWidth of a graph is the largest cut one would be forced to encounter when
curing a graph. The cut of a subset is critical, because for an infected set of nodes S , its cut is the
number of non-infected nodes adjacent to infected nodes, and hence is the instantaneous rate of
infection of the epidemic at that moment (in that configuration). For an illustration, consider again
an N -node line graph. Its CutWidth is equal to one, since when curing the graph from one end to
the other, we have only one single non-infected node adjacent to an infected node at any time. Note
that this is the best case, because if we were to start curing nodes in the middle of the infection, the
cut between the infected nodes and the non-infected nodes could be made as large as N − 1.
Their strategy is based on two main ideas. The nodes are cured following an ordering which

keeps the cut between the infected set and the non-infected set as low as possible. Then, as soon as
there is a new infection, the strategy switches to damage control, and focuses on returning to the
ordering previously mentioned.
Our result hinges on the fact that the damage-control part of the strategy is exactly the part

which is hard to accomplish with partial information. If the number of k-hop neighbors of a node
grows exponentially, as is the case for the binary tree, detecting where the infection can have
spread becomes a difficult task. Moreover, if we can detect such an escape path, but the infection
has spread to a high number of nodes by the time we have enough information to try to prevent
it, detection was useless. It is the tension between waiting less time and wasting budget on false
alerts, or waiting too long and being unable to prevent the spread, which makes the problem of
curing with partial information challenging.

2 MODEL AND MAIN CONTRIBUTIONS
The key elements that define our model are the dynamics of the spreading process and the controlled
curing process, and then the stochastic process that defines the degradation from perfect information.
We describe these in detail, in this order. We then provide a few basic definitions that appear
repeatedly throughout the paper, and then finally outline the main contributions of this work.

2.1 The SI + curing model
In a standard SI (susceptible→ infected) model, an epidemic spreads along edges from infected
nodes to their neighbors according to an exponential spreading model: when a node becomes
infected, it infects each uninfected neighbor according to an exponential random variable. SIS
models are SI models where infected nodes also transition to susceptible, again at an exponential
rate. Here, we consider the setting where the rate at which nodes transition from infected to
susceptible is under our control, subject to a budget. How to optimally use this budget is the main
question at hand. We prefer to call this a controlled SI process rather than a SIS process, because
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i j

Probability
of infection
µ = 1 − e−τ .
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infected.

Node j,
susceptible.

Budget rti , node
i will be cured
with probability
δti = 1 − e−r

t
i ·τ . Budget rtj , wasted.

Fig. 1. Visual representation of the different parameters – see Table 1 for more details

Table 1. Notations

N Number of nodes in the graph
It Number of infected nodes at time t
τ Size of a time step
r ti Budget spent on node i at time t

r =
∑N

i=1 r
t
i Total budget for each time step

µ = 1 − e−τ Probability of an infection along an edge between a susceptible and an infected node
δ ti = 1 − e−r ti ·τ Probability that node i gets cured at time t (if already infected)
δ = 1 − e−r ·τ Maximum probability of being cured for a node

p P(node i raises a flag at time t | node i is infected)
q P(node i raises a flag at time t | node i is susceptible)

we are interested in the regime where our total curing budget is o(N ), where N is the number of
nodes. A SIS process typically has transitions from susceptible to infected of the same order as the
infection rates; in our setting, this would correspond to a budget of at least Ω(N ). We note that
much work has considered this setting, and has characterized the absorption time (into the “all
cured” state) as a function of the topology of the network [14].

In the sequel, we consider a discrete, Bernoulli approximation to these exponential rate models,
by considering the dynamics evolving with discrete time steps τ ; we then take the time step τ to
zero, hence recovering the continuous time dynamics. In particular, this model is a discretization of
the exponential model of [10]. As τ → 0, the models become equivalent. This discretization and the
subsequent limit as τ → 0 facilitate our quantification of uncertainty, i.e., how much information
we receive about the state of each node, in a given time interval. This is defined precisely below.

The dynamics of this controlled stochastic process evolve as follows. At each time t , for all N
nodes of the graph, the decision-maker assigns a budget r ti , subject to the constraints

∑N
i=1 r

t
i = r .

During a time step of length τ , each node i is cured with probability δ ti = 1−e−r ti τ if it was infected,
and nothing happens otherwise – the budget is wasted. Then, for every edge between an infected
and a susceptible node, an infection occurs with probability µ = 1 − e−τ . The number of infected
nodes at time t is given by It . In particular, since the graph is completely infected at the beginning,
we have I0 = N . We summarize the notation in Table 1.

We now give a few definitions related to the above quantities, that we use throughout this paper.

Definition 2.1. We call curing process the stochastic process of cures and infections according
to the model described in section 2.1. This process has a deterministic part (how much of the budget
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is assigned to which nodes at each time step), and a stochastic part (curing and infection follow
geometric laws).

Definition 2.2. We call a strategy the set of budgets assigned for each node at each time: {r ti , i ∈
[N ], t = k · τ , k ∈ N}. We note that in the Partial Information setting that we introduce below, the
actions taken at time t1 may depend on the information accumulated until time t1 − τ .
In the rest of the paper, we refer to the set of infected nodes (resp. susceptible nodes) as the

infected set (resp. susceptible set). We may also refer to the cut between the infected set and
the susceptible set as the cut. When we use the word distance between two nodes in a graph, we
refer to the number of nodes in the shortest path between these two nodes. The distance between a
node and a set is the shortest distance between this node and any node of the set.

2.2 Partial Information/Blind Curing
In the Complete Information setting, we assume that the state (infected or susceptible) of each
node is known at each point in time. In what we call the Blind Curing model, we never have any
information about the status of each node. The Blind Curing model is a technical tool we use en
route to the final result. We introduce a Partial Information model that interpolates between these
two extremes, and indeed is our main object of interest. Our model of partial information provides
a stark tradeoff for the decision-maker: allocate resources to nodes whose status is very uncertain,
and thus significantly raise the probability of wasting curing resources, or wait to collect more
information and hence more certainty about the status of a node, running the risk that an infected
node was allowed to infect neighbors unfettered.

Our motivation for our partial information model comes from zero-day behavioral malware de-
tectors, often called Local Detectors [5, 16], where anti-malware software raises alerts of “suspicious
behavior” that are then related to a central authority. We refer to these alerts as “flags.” Thus, in the
Complete Information model, an infected node would raise a flag at each instant with probability 1,
and an uninfected node would never raise a flag. In the Partial Information model, at each time
step, each node, independently of all others, raises a flag with some probability. The probability of
getting a flag is p if the node is infected, q if the node is susceptible, with p > q. By aggregating the
information about a node over multiple time steps, we can use basic concentration inequalities to
deduce its state, and thus more observation time corresponds to higher certainty about a node’s
state.

As noted above, p = 1,q = 0 recovers the Complete Information setting, and p = q the Blind
Curing setting.

In order to recover the continuous time dynamics, we let τ → 0. The key quantity that measures
the amount of information per fixed unit time, is given by the rate function from Sanov’s theorem,
normalized by the time step: D (p | |q )

τ , whereD (p | |q) is the Kullback-Leibler distance between p and
q [7]. To understand this intuitively, this says that when D (p | |q )

τ is a constant, observing a node for
a fixed period of time corresponds to administering a test with a nonzero false positive and false
negative probability. That is, we can know the state of a node with constant probability of error by
observing this node over a constant amount of time, which is what one expects from a real-world
source of information. Note that as τ → 0, if p − q is constant (or, more generally, if D (p | |q) goes to
zero sublinearly) then we recover the Complete Information setting. Hence, the setting of interest
is where (p − q) → 0 as τ → 0, and the critical scaling is controlled by D (p | |q)/τ .

2.3 Main contributions
Our main result consists of two parts. First, we show that there exist graphs that cannot be cured
in polynomial time in the Blind Curing model. We then use this result to get a lower bound for
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the cost of lack of information in the Partial Information model. We obtain an expression for the
lower bound that shows the required tradeoff between D (p | |q )

τ (the information available per unit
of time), and the budget, r .

Theorem 2.3. A Partial Information impossibility result.
We consider the task of curing a fully infected complete balanced binary tree with N nodes. Let D (p | |q )

τ
be a measure of the amount of information we get per time step, and r be the budget (curing rate) of
our curing process. If

D (p | |q)

τ
= O *

,

log(N )
√
log(r )

r
+
-
, (1)

as τ → 0, then it is fundamentally impossible for any algorithm (of any computational complexity) to
cure the complete binary tree in polynomial expected time with budget r = O (W α ), whereW is the
CutWidth of the graph and α is any constant.

For the Blind Curing case, we also have the following upper bound.

Theorem 2.4. For all c > 0, we can always cure the binary tree in expected linear time with budget
O (e4/cN c ). In particular, our strategy does not require any information about the state of the nodes.

Interpreting the result. Suppose that if a node is observed for a fixed period of time, we can
estimate its state (infected or not) with probability 1 − δ , for some δ constant. Fixing α = 1 in the
statement above, our results implies that regardless of what this constant is, e.g., even if we have a
test that returns a result that is 99% accurate, then polynomial time curing is impossible, for budget
any multiple of the CutWidth. Indeed, as explained above, a constant-error estimate in a fixed unit
of time corresponds to D (p | |q)/τ , the left-hand side of (1), being a constant. On the other hand, if
the budget is any multiple of the CutWidth, the right-hand side of (1) grows like

√
log log(N ), and

in particular is larger than any constant. In contrast, with complete (and instantaneous) certainty
of the state of each node (which would correspond to an infinite left-hand side of (1)), [8] proves
that every graph can be cured in linear expected time with budget higher than the CutWidth.
For the Blind Curing setting, Theorem 5.8 says that for budget of any polynomial of log(N ),

curing takes superpolynomial time. Theorem 2.4 gives an upper bound that shows that this lower
bound is not too far off; it says that a budget of N c is sufficient, for any c > 0. This theorem is
proved in Appendix B.

Our result focuses on the binary tree. Since our main result is a lower bound, this specific example
is sufficient to resolve the question of whether the CutWidth (or something proportional to it)
is the right quantity to focus on to build a curing strategy robust to noise in our node estimates.
In addition to this, we note that many graphs contain trees as subgraphs. Since adding nodes and
edges only makes curing more difficult, our results can be seen to apply to any graph structure with
a binary tree as a subgraph (as long as adding edges does not dramatically change the CutWidth
of the graph).

Proof Idea. Our proof focuses on bottlenecks of the curing process: events thatmust happen with
high probability, regardless of the policy used, en route to curing an infection. Specifically, our proof
hinges on showing two such bottlenecks. First, we show that regardless of the policy, regardless
of the stochastics of the curing and infection process, with high probability the last nodes to be
cured cannot all be far from the root node. As we discuss below, the intuitive reason for this relies
on our graph topology, and the fact that the cut between the set of infected nodes and the set of
uninfected nodes must remain low if we hope to control the infection. On a binary tree, a simple
calculation (Proposition 4.12) shows that any N

r 4 -node set with low cut must contain nodes close to
the root. The significance of this result is that at all times that matter (namely, at all points where
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Fig. 2. Visual representation of the main steps of the proof: when only N
r 4 nodes remain infected, no strategy

can prevent the reinfection of N
r 4 new nodes in some other part of the graph. The graph can only be cured if

the cycle is broken, a rare event which takes superpolynomial time in expectation.

the curing policy might be close to succeeding), there will be infected nodes that are not far from
(exponentially) many uninfected nodes. Next, we show that in any interval of time, there must
be many uninfected nodes that are also unprotected by the curing policy, regardless of what the
curing policy is doing (Lemma 4.15). In Theorem 4.21, we combine these results to show that the
probability that an infection begins, travels through the root to the unprotected subset of nodes
and infects them before the remaining nodes are cured, is very close to 1.

3 PROOF SKETCH
We first prove that polynomial curing is impossible in the Blind Curing setting if the budget is
polynomial in the CutWidth. We then show that in the Partial Information setting, we do not
obtain enough information to detect threats of reinfection, and thus cannot prevent them: we are
"blind" to the threats until it is too late.
Our proof in the Blind Curing setting focuses on a subprocess which is bound to happen for

any curing strategy. We consider the last N
r 4 infected nodes. We show that by the time we cure

these last remaining infected nodes, a new set of N
r 4 nodes becomes infected with high probability.

Trying to cure the whole graph is then similar to playing a very long game of whack-a-mole with
superpolynomial expected end time.

3.1 Blind Curing setting
Step 1 (Section 4.1): We first show that if a strategy allows the cut between the infected

and susceptible set to be much higher than the available budget r , the infection becomes
uncontrollable. In this case, the infection rate exceeds the curing rate, and the reinfection
would be inevitable even if we had complete knowledge about the infection state of each
node at each time (i.e. this happens even in the Complete Information setting). In particular,
if N

r 4 nodes are infected and the cut is above r 4, the drift of the curing process is dominated
by the infections. We can then use random walks results, such as Wald’s Inequality, to prove
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that after a few time steps, we end up with at least as many infected nodes, but a cut below
r 3 (we actually end up with many more infected nodes, but as many is enough for the proof).
We can therefore focus on analyzing the situation in which N

r 4 nodes remain infected with a
cut lower than r 4.

Step 2 (Section 4.2): Due to the topology of the binary tree, a cut below r 4 implies that there
exists an infected node which is close to the root. This makes it easy for the infection to
escape through the root, and reach a large number of susceptible nodes. One key point of the
proof is that this node will remain infected (and therefore potentially infecting) for a very
long time, and an infection can start at any time step during this period.

Step 3 (Section 4.3): Since the infection escapes through the root, the number of uninfected
nodes easily accessible is very large, and specifically, larger than the budget. This makes it
impossible to cover all the potential escape routes. Notice that this is very specific to the
Blind Curing setting: if we knew in which direction the infection was escaping, we could
prevent it as in [10]. It is because the number of potential infected nodes is exponentially
higher than the number of actual nodes infected, and because we do not know where the
infection actually is, that we end up wasting considerable curing budget on uninfected nodes.
Therefore, the infection is very likely to escape, and a new set of N

r 4 nodes becomes infected
again.

3.2 Partial Information setting
To extend this result to the Partial Information setting, we notice that as soon as the cut of the
new infection reaches 3r , we can use Gambler’s Ruin results to show that at least N

r 4 nodes will
become infected with constant probability. If we cannot detect the infection escaping until a cut of
3r is reached, we therefore cannot prevent the reinfection with constant probability. Using Sanov’s
Theorem, we show that the uncertainty in our state estimation for any node does not resolve itself
quickly enough (in particular, with respect to how fast the neighborhoods of the binary tree grow).
Specifically, the infection remains undetectable with constant probability until a cut of 3r is attained.
This allows us to extend the result from the Blind Curing Setting to the Partial Information setting.

4 A BLIND CURING RESULT
In this section, we prove that in the Blind Curing setting, we cannot cure a complete binary tree in
polynomial time with budget O (W α ), whereW is the CutWidth, and α is any constant. A complete
binary tree has CutWidth smaller than log(N ) (Proposition A.1 in the appendix). Therefore, in
the rest of the paper, we set r = logα (N ).
We focus on the last moments of the curing, when only N

r 4 nodes remain infected. The proof
relies on the fact that by the time we cure these last N

r 4 nodes, a new set of N
r 4 nodes will have

become infected in another part of the graph with probability superpolynomially close to 1.

4.1 High-cut regime
We start by proving that without loss of generality, we can suppose the cut between the infected
set and the susceptible set is less than r 4 when N

r 4 nodes remain infected. If the cut is above r 4, the
infection becomes uncontrollable with high probability, and we end up with at least as many nodes
infected 1, but a cut below r 3 after some time steps. Therefore, supposing the cut is below r 4 only
reduces the expected time of curing.

1It is actually more likely that a large number of new nodes will become infected. However, our proof only requires the
total number of infected nodes to not decrease, so this is what we prove.
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Intuitively, if the budget is much smaller than the cut, the leading term in the drift of the infection
process will be driven by the new infections taking place, regardless of the policy in use. Trying to
eradicate, or even contain, an epidemic in these conditions would be like fighting an avalanche
with a flamethrower: some snow will melt, but it will not stop the avalanche - which will only stop
by itself. Similarly, we can only hope to regain some control over the infection process when the
budget is at least of the same order of magnitude as the cut.

To prove this result, we introduce a random walkGt which stochastically dominates the curing
process (Lemma 4.4). We define a stopping time, TSmallCut, which corresponds to the first time the
cut reaches r 3. We prove that by the time we reach this stopping point, many infections must have
taken place (Lemma 4.7 and 4.9), which implies that many time steps must have gone by. We can
then use concentration inequalities to prove there are at least as many infected nodes atTSmallCut as
there were at the beginning of the random walk (Lemma 4.11).

Definition 4.1. Let At ∼ B (r ,δ ), a binomial random variable with r trials and probability δ , and
Bt ∼ B (

r 3
3 , µ ), a binomial with r 3

3 trials and probability µ.
We define the random walk Gt :

Gt =

t∑
t ′=t0

At ′ − Bt ′ .

We are especially interested in the sign of the random variable

GTSmallCut =

TSmallCut∑
t ′=t0

At ′ − Bt ′ .

Definition 4.2. We call the increase in susceptible (uninfected) nodes since t0 the random
variable It0 − It , for t > t0. This is the difference between the total number of infected nodes at
time t0, and the total number of infected nodes at time t > t0. In other words, it corresponds to the
difference between the number of nodes we successfully cured and the number of newly infected
nodes between the times t0 and t . Note that if more infections than curings have happened since t0,
the increase in susceptible nodes is negative.

Definition 4.3. A random variable X1 is stochastically dominated by a random variable X2, if
P[X1 ≥ x] ≤ P[X2 ≥ x] for all x .

Lemma 4.4. Let t0 be the first time such that It0 =
N
r 4 and the cut is above r

4. The random walkGt ,
defined above, stochastically dominates the quantity It0 − It (the increase in susceptible nodes since t0)
for any t ≤ TSmallCut, for every strategy.

Proof. At each time step t , each node i is assigned a budget r ti , with r
t
i ≤ r , and gets cured with

probability δi = 1 − e−r ti ·τ ≤ δ = 1 − e−r ·τ . By assumption of our model, there are at most r nodes
being cured, among which at most r are infected (we do not know for sure if the nodes we are
curing are infected or not since we are in the Blind Curing setting). Each of these infected nodes
can therefore return to the susceptible state with probability at best δ . In other words, the number
of cured nodes is stochastically dominated by a binomial variable with r trials and probability δ ,
i.e., it is stochastically dominated by At .
Before the stopping time, the cut is at least as big as r 3. The maximum degree in a tree is 3, so

3 of these edges could lead to the same node. Therefore, there are at least r 3
3 potential infections

happening with probability µ. Bt is therefore stochastically dominated by the number of new
infections in the curing process, for any strategy.

Thus, Gt stochastically dominates It0 − It , for any t ≤ TSmallCut, for every strategy. □
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We use random walks properties to exponentially bound the probability that GTSmallCut is positive,
which correponds to more cures than infections. We recall Wald’s Inequality for random walks,
whose proof appears in Section 9.4 of [13].

Theorem 4.5. Wald’s identity for 2 thresholds
Let Xi , i ≥ 1 be i.i.d. and let γ (r ) = log(E[erX ]) be the Moment Generating Function (MGF) of X1. Let
Int(X ) be the interval of r over which γ (r ) exists. For each n ≥ 1, let Sn = X1 + · · · + Xn . Let ϵ > 0
and β < 0 be arbitrary, and let J be the smallest n for which either Sn ≥ ϵ or Sn ≤ β . Then for each
r ∈ Int(X ):

E[exp(rS J − Jγ (r ))] = 1.
Corollary 4.6. Under the conditions of Theorem 4.5, assume that E[X ] < 0 and that r ∗ > 0 exists

such that γ (r ∗) = 0. Then:
P[S J ≥ ϵ] ≤ exp(−r ∗ϵ ).

We now use Wald’s Inequality to prove It0 − It cannot be very large.
Lemma 4.7. If the cut is above r 3, the probability that the increase in susceptible nodes It0 − It is

higher than K is exponentially small in K .

Proof. The curing process is stochastically dominated by the random walk described above. Let
PcuringK be the probability that Gt reaches the value K before stopping. Using Wald’s Inequality
(Corollary 4.6):

PcuringK ≤ e−x
∗ ·K .

where x∗ is a value for which the MGF of Gt is 1. We prove in Proposition A.10 in the appendix
that there exists such a x∗ > 0, and in Proposition A.11 in the appendix that x∗ converges to log( r3 )
when τ → 0. □

Corollary 4.8. The increase in susceptible nodes It0−It is bounded above by
log2 (N )

x ∗ with probability
at least 1 − e− log

2 (N ) .

Proof. Using Lemma 4.7, we have:

e−x
∗ ·K ≥ e− log

2 (N ) =⇒ K ≤
log2 (N )

x∗
.

We conclude with setting K = It0 − It . □

We deduce from the previous result that many infections must have taken place.

Proposition 4.9. AtTSmallCut (when the cut reaches r 3), at least r 4
7 infections will have taken place.

Proof. Let C be the number of nodes cured between t0 and TSmallCut , and I be the number of
new infections in the same time period. Any curing or infection reduces the cut by at most 3, since
the graph is a binary tree. Therefore:

3C + 3I ≥ r 4 − r 3.

On the other hand, using Corollary 4.8, we can bound the increase in susceptible nodes:

C − I ≤
log2 (N )

x∗
.

Combining the two inequalities:

I ≥
r 4 − r 3

6
−
log2 (N )

x∗
≥N≫1

r 4

7
.

□
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The previous Proposition proved that many infections happened. We now show this implies that
many time steps must have passed by, which allows us to use concentration inequalities. To prove
the next Lemma, we recall Hoeffding’s Inequality:

Theorem 4.10. (Hoeffding’s Inequality for general bounded random variables).
Let X1, . . . ,Xk be independent random variables. Assume that Xt ∈ [mt ,Mt ] almost surely for

every i . Then, for any ϵ > 0, we have

P *
,

k∑
t=1

(Xt − E[Xt ]) ≥ ϵ+
-
≤ e
− 2ϵ2∑k

t=1 (Mt −mt )2 .

Lemma 4.11. The probability that the random walk reaches the stopping time with It0 − It < 0 tends
to 0 as τ → 0.

Proof. Let MoreCurinд be the event that the increase in susceptible nodes at time TSmallCut
(It0 − ITSmallCut ) is non-negative. We use Hoeffding’s Inequality to bound P

(∑k
t=1At − Bt ≥ 0

)
. Then,

by Proposition 4.9, we know that at least I = r 4
7 infections must have taken place. Therefore,

the time it takes to reach a small cut is at least the time it takes for the random walk to infect I
nodes. Since the infection rate is at least r 3

3 , we can deduce that TSmallCut stochastically dominates
TNegBinomialRW, a negative binomial distribution of parameter 3I

r 3 and probability of failure µ. We can
therefore replace TSmallCut by the simpler quantity TNegBinomialRW in the following calculations:

P(MoreCurinд) = P *.
,

TSmallCut∑
t=1

At − Bt ≥ 0+/
-

=

∞∑
k=0
P *

,

k∑
t=1

At − Bt ≥ 0+
-
· P (TSmallCut = k )

≤

∞∑
k=0

e
−k 2(r 3µ−rδ )2

(r 3+r )2 · P
(
TNegBinomialRW = k

)

≤ e
− I
r 3

6(r 3µ−rδ )2

(r 3+r )2
*..
,

µ

1 − µe−
2(r 3µ−rδ )2

(r 3+r )2

+//
-

3I
r 3

→τ→0 0,

where we have used that the MGF of a negative binomial of parameter M, probability of success p,
evaluated at u, is

( 1−p
1−eup

)M
. □

4.2 Closeness to the root
From the moment we start curing the last N

r 4 nodes, to the moment we have cured half of them
and only N

2r 4 of these nodes remain infected, we show in this section that there exists an infected
node at distance O (log log(N )) from the root (Proposition 4.12). This node stays infected for a high
number of steps (Proposition 4.13).

Proposition 4.12. If we select a set of N
2r 4 nodes in a tree such that the cut of this set is lower than

r 4, then there is at least one node from this set at distance 9 log(r ) = 9α log log(N ) = O (log log(N ))
from the root.
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Proof. We prove the contrapositive: if all the nodes of this set are at distance greater than
9α log log(N ) from the root, then the cut is higher than r 4.
Any subtree rooted at distance 9α log log(N ) from the root contains N

r 9 nodes, and has a cut of
at least 1. Suppose all the N

2r 4 nodes of the selected set are at distance 9α log log(N ) or more from
the root. We therefore need at least N

2r 4 /
N
r 9 =

r 5
2 such subtrees, for a total cut of at least r 5

2 > r 4.
Hence, the closest node is at distance at most 9α log log(N ) = O (log log(N )) from the root. □

We now show it takes many time steps to cure N
2r 4 nodes, regardless of the policy.

Proposition 4.13. Curing half of the last N
r 4 nodes requires more than N

2r 4 ·
1
δ time steps in

expectation.

Proof. If we ignore any potential infections, the time needed to cure N
2r 4 nodes is at least the sum

of N
2r 4 geometric random variables of parameter δ . The result follows by linearity of expectation. □

Proposition 4.14. Let T N
2r 4

be the random variable representing the time to cure half of the N
r 4 last

nodes. Then:

P
(
T N

2r 4
≤

N

4r 5δ

)
≤ e−

N
8r 5 .

Proof. The proof can be found in the Appendix, Proposition A.8.

Therefore, there exists an infected node close to exponentially many uninfected nodes, during
at least N

4r 5δ time steps. We now establish a lower bound on the probability of reinfecting N
r 4 new

nodes in some other part of the graph, starting from this node.

4.3 Low-cut regime
We prove in this section that the probability of infecting N

r 4 new nodes in some other part of the
graph, by the time it takes to cure half of the N

r 4 last infected nodes, is superpolynomially close to 1
for every strategy (Lemma 4.19). The graph can only be cured if this does not happen.
The following Lemma is key to understanding why no strategy can prevent the reinfection. In

the Blind Curing setting, we do not know which nodes are infected. Since there are exponentially
many infection routes from the root of the tree, spreading the budget means there will always be a
subtree on which very small budget is allocated. If the infection reaches this tree, reinfecting a lot
of nodes becomes very likely.

Lemma 4.15. For every time t0, there exist r subtrees containing N
r 3 nodes for which less than t3

r
budget is used in the interval [t0, t0 + t3]. We call any of these trees aminimal tree for [t0, t0 + t3].

Proof. By the pigeonhole principle, since the total budget during this interval is t3 · r , and there
are at least r 3 disjoint subtrees containing N

r 3 nodes (Proposition A.2 in the appendix), there are at
least r subtrees that contain less than r · t3 ·rr 3 =

t3
r budget on this interval. □
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Fig. 3. Visual representation of Proot (t1), Pmintree (t2), and P3r (t3).

Definition 4.16. From Proposition 4.12, we know there exists an infected node close to the root.
We call an Escape(t0, t1, t2, t3) the conjunction of the following events:

(1) At time t0, this node infects its parent.
(2) The infection propagates from the parent node to the root in time t1, without any node being

cured.
(3) The infection propagates from the root of the tree to the root of a minimal tree for [t0 + t1 +

t2, t0 + t1 + t2 + t3] in time t2, without any node being cured.
(4) 3r new nodes are infected in a minimal tree for [t0 + t1 + t2, t0 + t1 + t2 + t3] in time t3, without

any node in a minimal tree being cured.
(5) The number of newly infected nodes reaches N

r 4 before it reaches r .

We notice that if an Escape happens, then N
r 4 new nodes in some other part of the graph were

reinfected. However, it is possible to reinfect N
r 4 new nodes without any Escape happening.

If {t0, t1, t2, t3} , {t ′0, t
′
1, t
′
2, t
′
3}, then Escape (t0, t1, t2, t3) and

Escape (t ′0, t
′
1, t
′
2, t
′
3) are disjoint events.

We notice that the probability of all the events defined above is independent of t0. To simplify
notations, we set t0 = 0 for the following definitions.
• Proot (t1), the probability that the infection reaches the root in time exactly t1.
• Pmintree (t2), the probability that the infection reaches a minimal tree for [t1 + t2, t1 + t2 + t3] in
time t2, conditioned on the fact that the root of the tree is infected. Interestingly, by symmetry
of the binary tree (all potential minimal trees are at the same distance from the root of the
tree), this quantity does not depend on t1 or t3.
• P3r (t3), the probability that 3 · r nodes are reinfected in a minimal tree in time t3, conditioned
on the fact that the root of a minimal tree is infected.
• Pspread, the probability that the increase in susceptible nodes since time t1 + t2 + t3 reaches
−N
r 4 + 3 · r before it reaches 2r , conditioned on the fact that 3r new nodes are infected at time

t1 + t2 + t3.
The proof relies on the fact that no strategy can adapt to the infection moving towards a minimal

tree. In the Blind Curing setting, most of the budget is wasted covering nodes which are not infected
or about to be infected, while most of the graph is left unprotected.

We now bound the probabilities defined above.
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Proposition 4.17.

• Proot (t1) ≥

(
t1

9α log log(N )

)
· µ9α log log(N )+1 (1 − µ )t1−9α log log(N ) (1 − δ )t1 ,

• Pmintree (t2) ≥

(
t2

3α log log(N )

)
· µ3α log log(N )+1 (1 − µ )t2−3α log log(N ) (1 − δ )t2 ,

• P3r (t3) ≥

(
t3
3r

)
e−

t3
r ·τ

· µ3r+1 (1 − µ )t3−3re−
t3
r ·τ .

Proof. • Straightforward combinatorics result.
• Same, noticing log(r 3) = 3α log log(N ).
• Since we are in a minimal tree for [t1 + t2, t1 + t2 + t3], the total budget that can be spread
among all nodes during this time is t3

r (Lemma 4.15). Let r ti be the budget spent on node i at
time t , and let δ ti be the probability that node i is cured at time t .

P3r (t3) ≥

(
t3
3r

)
µ3r+1 (1 − µ )t3−3r

t3∏
time t=1

∏
node i in

minimal tree

(1 − δ ti )

=

(
t3
3r

)
µ3r+1 (1 − µ )t3−3r

t3∏
time t=1

∏
node i in

minimal tree

e−r
t
i τ

=

(
t3
3r

)
µ3r+1 (1 − µ )t3−3re−

t3
r ·τ .

□

Proposition 4.18. Conditioned on the cut of the infected set being at least 3r , the probability that
the increase in susceptible nodes since time t1 + t2 + t3 reaches −N

r 4 + 3 · r before it reaches 2r , is at

least 1− 1
2
3·r

1− 1
2

N
r 4
≥ 1

2 .

Proof. This is a classic Gambler’s Ruin problem, with low boundary 2r and high boundary N
r 4 .

During the infection process, which starts with 3r infected nodes, the cut is always higher than 2r ,
so the infection rate is always higher than 2r , while the curing rate is r . The proof can be found
in [15]. □

We now combine the previous results to bound the probability of escaping in one time step.

Lemma 4.19. Let PescapeOneStep be the probability that an Escape starts at a given time step. Then:

PescapeOneStep ≥ *
,
µ

(
µ (1 − δ )

δ + µ (1 − δ )

)9α log log(N )

+
-

·
*.
,

*
,

µe−
1
r

(1 − e−
1
r ) + µ (e−

1
r )

+
-

3r
+/
-
·

( 1
2

)
.
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Therefore, for τ sufficiently small (and in particular, as τ → 0),

PescapeOneStep ≥
τ

2e3e12α 2 log2 log(N )
+ o(τ ).

Proof. We notice Proot (t1) only depends on t1, Pmintree (t2) only depends on t2, P3r (t3) only
depends on t3, while Pspread is independent of t1, t2, and t3. Therefore, using results from Lemma
A.6 and Corollary A.7 in the Appendix which give the values of P startPath and Ppath, we have:

PescapeOneStep =
∞∑

t1,t2,t3=0
Proot (t1) · Pmintree (t2)

· P3r (t3) · Pspread

=
*.
,

∞∑
t1=0

Proot (t1)
+/
-
·

*.
,

∞∑
t2=0

Pmintree (t2)
+/
-

·
*.
,

∞∑
t3=0

P3r (t3)
+/
-
·
(
Pspread

)
≥

(
P startPath
9α log log(N )

)
·

(
P
path
3α log log(N )

)
· *

,

(
µe−

τ
r

(1 − e−
τ
r ) + µ (e−

τ
r )

)3r
+
-
·
(
Pspread

)
≥ *

,
µ

(
µ (1 − δ )

δ + µ (1 − δ )

)12α log log(N )

+
-

· *
,

(
µe−

τ
r

(1 − e−
τ
r ) + µ (e−

τ
r )

)3r
+
-
·

( 1
2

)
.

As τ → 0:

PescapeOneStep ∼τ→0 *
,
τ

(
τ

(r + 1)τ

)12α log log(N )

+
-
· *

,

τ

( 1r + 1)τ
+
-

3r

·
1
2

≥τ→0 τ
(
e−12α

2 log2 log(N )
)
·
e− log(1+

1
r ) ·3r

2
+ o(τ )

≥τ→0 τ
(
e−12α

2 log2 log(N )
)
·
e−3

2
+ o(τ )

≥τ→0
τ

2e3e12α 2 log2 log(N )
+ o(τ ).

□

We therefore deduce the probability that no Escape happens by the time we cure half of the N
r 4

infected nodes.

Lemma 4.20. Let NoEscape be the event that no Escape happens by the time we cure half of the N
r 4

infected nodes. Then:

P (NoEscape ) ≤N≫1 e
− N

e24α 2 log2 log(N ) .
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Proof. Since there are always more than N
2r 4 nodes infected, there is at least one infected node

at distance 9α log log(N ) from the root (Lemma 4.12), which means the bound for PescapeOneStep
established in Lemma 4.19 holds. Using Proposition A.8, we split the analysis into two cases: whether
we can cure N

2r 4 in less than N
4r 5δ time steps or not. The probability of one Escape starting at time t

being independent from the probability of an Escape starting at any other time step t ′:

P (NoEscape ) ≤
(
1 − PescapeOneStep

)T N
2r 4

≤ P(T N
2r 4
≤

N

4r 5δ
) · 1

+ P(T N
2r 4
≥

N

4r 5δ
) ·

(
1 − PescapeOneStep

) N
4r 5δ

≤ e−
N
8r 5 +

(
1 − PescapeOneStep

) N
4r 5δ .

Using Lemma 4.19 to get an equivalent when τ → 0:

P (NoEscape ) ≤ e−
N
8r 5 + *

,
1 −

(
µ

µ (1 − δ )
δ + µ (1 − δ )

)12α log log(N )

+
-

N
4r 5δ

≤τ→0 e
− N

8r 5 +

(
1 −

τ

2e3e12α 2 log2 log(N )
+ o(τ )

) N
2r 5rτ

≤N≫1 e
− N

e24α 2 log2 log(N ) .

□

4.4 A Blind Curing result
From Sections 4.1 and 4.3, we know the graph can only be cured if we are in one of these two cases:
(1) The cut was above r 4, but we cured the whole graph anyway, which happens with probability

less than e− log
2 (N ) (Proposition 4.8)

(2) The cut was below r 4, but no Escape happens by the time it takes to cure half of N
r 4 infected

nodes, which happens with probability less than e
− N

e24α 2 log2 log(N ) (Lemma 4.20).
We can therefore obtain a bound on the expected time it takes to cure the whole graph.

Theorem 4.21. In the Blind Curing setting, curing a complete binary tree takes Ω
(
e log

2 (N )
)
time

in expectation with any budget polynomial in the CutWidth. Therefore, no polynomial expected time
curing strategy exists for budget r = O (W α ) = O (logα (N )), for all α constant.

Proof. Let CureLastNodes be the event that we are in case (1) or (2) described above. By union
bound:

P (CureLastNodes ) ≤ e− log
2 (N ) + e

− N

e24α 2 log2 log(N )

≤ 2e− log
2 (N ) .

Using Proposition A.12 of the appendix, we have 1
r ≤

τ
δ . The number of times we try to cure the

last N
r 4 is stochastically bounded below by a geometric variable of parameter P (CureLastNodes ).

Following Proposition 4.13, curing N
2r 4 lasts at least

N
2r 4 ·

1
δ time steps, so N

2r 4 ·
τ
δ time. Therefore,

the expectation of the length of the curing process is the number of times we try to cure the last
infected nodes, multiplied by the time it takes to cure them.
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E(Length) ≥
1

P (CureLastNodes )︸                    ︷︷                    ︸
expected number
of times we try
to cure N

r 4 nodes

·
N

2r 4δ︸︷︷︸
minimal number of

time steps to
cure N

r 4 nodes

· τ︸︷︷︸
size of a
time step

≥
e log

2 (N )

2
·
N

2r 4
·
1
r

= Ω
(
e log

2 (N )
)
.

Hence, it is not curable in polynomial time for budget r = O (W α ) = O (logα (N )), for all α
constant. □

5 A PARTIAL INFORMATION RESULT
Definition 5.1. We call sample the information given by one node at a given time step (i.e.,

whether a flag was raised or not). We call an infected-sample a sample from an infected node.

When an Escape happens, we show that with constant probability, not too many infected-samples
are produced. In particular, by the time reinfecting N

r 4 new nodes becomes inevitable with constant
probability, not enough infected-samples are produced to determine if one of the minimal trees’
nodes is infected with better than constant error probability. In other words, no strategy can utilize
the information available without making mistakes a constant fraction Pconfuse of the time.

If we cannot recognize that an infection has happened before it is too late to prevent it, everything
is as if we were in the Blind Curing model. We can therefore extend the results from the previous
section.

5.1 Quantity of information available before the cut reaches 3r
If we reuse the terms introduced in Section 4.3, the Escapes we consider are composed of four
phases:
(1) reaching the root
(2) reaching the root of a minimal tree. There are r possible such minimal trees.
(3) infecting 3r nodes in this minimal tree
(4) spreading the infection from 3r to N

r 4 nodes
Since the spreading phase (4) happens with constant probability even in the Complete Information
setting, we focus on the number of samples created by the first three phases. We focus in particular
on the number of samples created by phase (3) in Lemma 5.2. We show in the proof of Lemma 5.3
that the number of samples produced by phases (1) and (2) is negligible compared to the number of
samples produced by phase (3). To make sure that no other infected-samples can be gathered, we
forbid infections from happening outside of an Escape (Lemma A.9).

Let us notice that every time a new infection takes place, the cut increases by 1 (every new node
infected gives access to 2 new nodes, but the edge leading to it is not part of the cut any longer).
The next lemma says that in the event of an infection in a minimal tree, it is likely that the

number of infected-samples we obtain is small.

Lemma 5.2. In the event that the root of the minimal tree becomes infected, then conditioned on the
event that 3r new nodes of this minimal tree become infected, we gather at most 6r

τ samples from the
newly infected nodes, with probability at least 1

2 .
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Proof. Let Nsamples be the number of samples produced by infected nodes from the time one
node was infected to the moment the 3r th node was infected. The time to infect one more node
when i nodes are infected is given by a geometric variable Geo(i, µ ) of parameter 1 − (1 − µ )i

(Proposition A.3 of the appendix). Therefore, the jth node to be infected produces
∑3r−1

i=j Geo(i, µ )
samples. Thus, conditioned on the event that 3r nodes become infected:

Nsamples =

3r−1∑
j=1

3r−1∑
i=j

Geo(i, µ ) =
3r−1∑
j=1

j ·Geo(j, µ ).

Therefore, again conditioned on 3r nodes becoming infected, the expected number of samples is:

E(Nsamples | 3r infected) =
3r−1∑
j=1

j · E(Geo(j, µ )) =
3r−1∑
j=1

j ·
1

1 − (1 − µ ) j

=τ→0

3r−1∑
j=1

j ·
1
jτ

≤τ→0
3r
τ
.

We conclude by using Markov’s Inequality. □

We now count the number of samples available from phases (1), (2) and (3) of an Escape .

Lemma 5.3. Conditioned on the event that an Escape happened, we gather at most 6r
τ infected-

samples from phase (3), and 360 log2 (r )
τ infected-samples from phases (1) and (2), with probability at

least 1
4 .

Proof. Using Proposition 4.12, there are at most 9 log(r ) nodes from one infected node to the
root. Using Proposition 4.15, the minimal tree is at distance 3 log(r ) from the root. We then need
3r additional infections to get to a point where the infection is unstoppable (Proposition 4.18).
Using Markov’s Inequality, we can infect these 9 log(r ) + 3 log(r ) = 12 log(r ) nodes in 24 log(r )

τ
time steps with probability 1

2 . Using Lemma A.4 of the appendix, we can infect the 3r nodes in
2 log(3r )

τ ≤
6 log(r )

τ time steps with probability 1
2 . Therefore, we can infect all these nodes in 30 log(r )

τ

time steps with probability 1
4 , which gives at most 30 log(r )

τ · 12 log(r ) samples for the first 12 log(r )
nodes, and 2 · 3rτ =

6r
τ samples for the last 3r nodes, which concludes the proof. □

Conditioned on reaching a cut of 3r in a minimal tree in less than 30 log(r )
τ time steps, we now

bound the probability of not infecting any nodes which are not part of the Escape . This ensures
that the only infected samples we could get come from the nodes in the Escape .

Proposition 5.4. Conditioned on reaching a cut of 3r in a minimal tree in less than 30 log(r )
τ time

steps, the probability PNoOtherInfections of not infecting any nodes outside of the Escape is bounded by:

PNoOtherInfections ≤ e−
360 log2 (r )µ

τ

≤τ→0 e
−360 log2 (r ) .

Proof. The proof can be found in Proposition A.9 in the Appendix.
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5.2 Detecting an infected node
The proof relies on this idea: any strategy attempting to prevent an Escape needs to shift its
budget towards the minimal tree in which the infection is progressing. For this to happen, it is
necessary to realize that one of the minimal trees is threatened. Determining which one amounts
to distinguishing between the following hypotheses:
• H0: In the null hypothesis, none of the r minimal trees have any infected nodes.
• H1: One of the r minimal trees has at least one infected node, while the others do not.

We use the results in Lemma 5.5 to show that there are not enough infected-samples created by
nodes on the path from the node close to the root to the root of a minimal tree to realize that even
one node is infected. This implies that the nodes from phase (1) and (2) cannot help detect a threat
to a minimal tree. Lemma 5.5 is also used to show that we do not gather enough infected-samples
from phase (3) to distinguish between H0 and H1 defined above, which means we cannot know if
there is at least one infected node in one minimal tree.
Thus, we combine all these results to calculate P(NoEscapePI ), the probability that an Escape

happens, that not too many samples are produced during this Escape , that no other nodes are
infected outside of the Escape , that the samples from phase (1) and (2) do not allow the identification
of the infected minimal tree, and that the samples from phase (3) are not enough to reveal whether
or not one minimal tree is indeed infected.

We finally use these results to extend the Blind Curing theorem to the Partial Information setting
(Theorem 5.8).

Lemma 5.5. (1) We need Ω
(
log( 1

ϵ )
D (p | |q )

)
samples to decide if a node is infected or not with probability

at least Ω (1 − ϵ ).

(2) We need Ω

(
log( 1

ϵ )
√
log(r )

D (p | |q )

)
samples to distinguish between hypothesis H0 and H1, and detect if

one minimal tree has at least one node infected among r minimal trees.

Proof. (1) Using Sanov’s Theorem [22], following the proof in Proposition 5.6 of [17], we
know that we need Ω

(
1

D (p | |q )

)
samples to distinguish between two coins of parameters p

and q with probability Ω(1). We can boost this probability to show that we need Ω
(
log( 1

ϵ )
D (p | |q )

)
to distinguish between p and q with probability Ω (1 − ϵ ).

(2) This follows by considering the maximum of r B (n,q) binomial random variables. Using
a Gaussian approximation to the binomial, and the fact that the maximum of r standard
Gaussian random variables is

√
2 log(r ), we obtain the desired result.

□

Corollary 5.6. The probability Pconfuse of not being able to detect which minimal tree is infected
during phase (3) is bounded away from 0.

In particular, we have:

Pconfuse =N≫1 Ω

(
e
−
D (p | |q )

τ · r√
log(r )

)
.

Proof. We separate the samples in two groups:
• The sample from phase (1) and (2) are used to detect if one node was infected on the path from

the node close to the root to the root of a minimal tree. We get 360 log2 (r )
τ =

log
(
e
D (p | |q )

τ ·360 log2 (r )
)

D (p | |q )
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samples from phase (1) and (2) (Lemma 5.2), so the probability of confusing coins of parameters
p and q is at least Ω

(
e−
D (p | |q )

τ ·360 log2 (r )
)
according to Lemma 5.5.

• The samples from all phases are used to distinguish between H0 and H1. We get 6r
τ =

log*.
,
e
D (p | |q )

τ · 6r√
log(r ) +/

-

√
log(r )

D (p | |q ) samples from phase (1) and (2) (Lemma 5.2), so the probability of

confusing coins of parameters p and q is at least Ω
(
e
−
D (p | |q )

τ · 6r√
log(r )

)
according to Lemma 5.5.

Combining the two, the probability of not detecting the threat is at least:

Pconfuse = Ω

(
e
−
D (p | |q )

τ ·( 6r√
log(r )

+360 log2 (r ))
)

=N≫1 Ω

(
e
−
D (p | |q )

τ · r√
log(r )

)
.

□

We now consider the time needed to cure the graph for Pconfuse > 0.

Lemma 5.7. Let EscapePI be the event that by the time it takes to cure half of N
r 4 infected nodes, an

Escape happens but remains undetectable (i.e., the samples produced by the newly infected nodes during
phases (1), (2), and (3) are not enough to deduce that there exists an infected minimal tree), and no
node outside of the Escape becomes infected. We provide a bound for NoEscapePI , the complementary
of this event.

P(NoEscapePI ) ≤ e
−
PNoOtherInfections ·Pconfuse ·N

e96α 2 log2 log(N ) .

Proof. Let EscapeOneStepPI be the conjunction of all the following events:
• An Escape happens at a given time step, which happens with probability at least PEscapeOneStep
(Lemma 4.19).
• Conditioned on an Escape happening, less than 6r

τ samples are produced by the newly infected
nodes during phase (3), and less than 360 log2 (r )

τ infected-samples are produced during phase
(1)-(2), which happens with probability at least 1

4 (Lemma 5.2).
• Conditioned on an Escape happening in less than 30 log(r )

τ time steps, no node outside of the
Escape becomes infected, which happens with probability PNoOtherInfections.
• Conditioned on all the above, the samples from phase (3) are not enough to reveal whether
or not one minimal tree is indeed infected, which happens with probability Pconfuse.

We notice that if we cannot tell whether or not a minimal tree is infected by the time it takes to
reach phase (4) of an Escape , the situation is almost equivalent to the Blind Curing model. We can
therefore apply exactly the same reasoning as in Theorem 4.21 if we replace P(EscapeOneStep) by
P(EscapeOneStepPI ).

P(EscapeOneStepPI ) ≥PEscapeOneStep ·
1
4

· PNoOtherInfections · Pconfuse,

Following the exact same reasoning as in Lemma 4.19, we get:

P(NoEscapePI ) ≤ e
−
PNoOtherInfections ·Pconfuse ·N

e96α 2 log2 log(N ) .
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□

Theorem 5.8. A Partial Information impossibility result
Let D (p | |q )

τ be a measure of the amount of information we get by time step. If:

D (p | |q)

τ
= O *

,

(
log

(
N

e456α 2 log2 log(N )

)
− 2 log log(N )

) √
log(r )
r

+
-

= O *
,

log(N )
√
log(r )

r
+
-
,

as τ → 0, we cannot cure the complete binary tree in polynomial expected time with budget r =W α ,
for any α constant.

Proof. From Lemma 5.7, we know:

P(NoEscapePI ) ≤ e
−
Pconfuse ·PNoOtherInfections ·N

e96α 2 log2 log(N ) .

From Corollary 5.6, we know

Pconfuse = Ω

(
e
−
D (p | |q )

τ · r√
log(r )

)
.

P(NoEscapePI ) ≤ e
−
PNoOtherInfections ·Pconfuse ·N

e96α 2 log2 log(N )

= e

−O

*....
,

e
−·*

,
log*

,
N

e456α 2 log2 log(N )
+
-
−2 log log(N )+

-
·
r
√
log(r )

√
log(r )r

·N

e456α 2 log2 log(N )

+////
-

= e−O(log
2 (N )) .

Following the same reasoning as in Theorem 4.21, we conclude it takes at least eΩ(log
2 (N )) ·N

2 log4α (N )
≥

eΩ(log
2 (N )) time to cure the graph, so more than any polynomial expected time. □

In particular, this holds for α = 1. If we remember that the CutWidth of a tree is smaller than
log(N ) (Proposition A.1 of the appendix), we obtain:

Corollary 5.9. If the quantity of information by time step measured by D (p | |q )
τ is constant, no

strategy can achieve polynomial time curing for the complete binary tree in the Partial Information
setting, for budget r = O (W ) = O (log(N )).

6 CONCLUSION
We have shown that unless we know the state of each node with perfect accuracy, and instan-
taneously, then the CutWidth of the graph is no longer the sole quantity which determines
the budget required to cure an infection in polynomial time. Practically, this means that quickly
obtaining signature-based diagnostic tools, even if expensive, is critical. On the theoretical side, our
work shows that the interplay between stochastic processes and combinatorial properties of graphs
needs to be better understood. Indeed, resolving the gap between our upper and lower bounds
as a function of general topological graph quantities remains an important question. Similarly,
extending our understanding of upper and lower bounds to other infection models is important.
This work demonstrates the important connection between budget for control, and budget for
estimation, as for many interesting problems, these two are inextricably intertwined.
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A COMPLEMENTARY RESULTS
A.1 Properties of the binary tree
We first establish a few properties of the complete binary tree.

Proposition A.1. The CutWidth of the complete binary tree is smaller than log(N ).

Proof. Consider the crusade [9] implied by a Deep First Search over the tree. This crusade has a
maximal cut of log(N ) − 1. Thus, by definition, the CutWidth is lower than log(N ) − 1.

Proposition A.2. There are r 3 subtrees containing N
r 3 nodes, and they are at distance O (log log(N ))

from the root.

Proof. In the complete binary tree, there are 2k subtrees at distance k from the root that contain
N
2k nodes. The results follows for k = 3 log(r )

log(2) .
□

A.2 Some probabilities
A.2.1 Geometric variables.

Proposition A.3. The minimum of i independent geometric random variables of parameter µ is a
geometric random variable of parameter 1 − (1 − µ )i .

Proof. Let Geo(i, µ ) be the minimum of i independent geometric random variables. Then:

P(Geo(i, µ ) ≥ k ) = ((1 − µ )k−1)i

= ((1 − µ )i )k−1

We recognize the probability distribution of a geometric variable with parameter 1 − (1 − µ )i .

Lemma A.4. As τ → 0, it takes less than log(k )
τ time steps in expectation to infect k new nodes.

Proof. Every new infection increases the cut by 1. Let Geo(i, µ ) be the minimum of i geometric
random variables of parameter µ, and letTk be the time it takes to infect the k new nodes. We have:

Tk =
k−1∑
i=1

Geo(i, µ )

Using Claim A.3, Geo(i, µ ) is a geometric variable of parameter 1 − (1 − µ )i . Therefore:

E(Tk ) = E *
,

k−1∑
i=1

Geo(i, µ )+
-

=

k−1∑
i=1

1
1 − (1 − µ )i

=τ→0

k−1∑
i=1

1
iτ

≤τ→0
log(k )
τ

□
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A.2.2 Some curing probabilities.

Proposition A.5. If all the budget at a given time step is spent, the probability that no nodes are
cured in this time step is 1 − δ .

Proof. Let ri be the budget attributed to the node i . Then:

PNoCuring =
N∏
i=1

1 − δi =
N∏
i=1

e−riτ

= e

−
*...
,

N∑
i=1

ri
+///
-

τ

= e−rτ

= 1 − δ .

□

Lemma A.6. The probability Ppath
m thatm nodes are reinfected along a path, such that no node on

them-length path is cured before they all become infected, is lower bounded by
( µ (1−δ )
δ+µ (1−δ )

)m+1
.

Proof. Using Proposition A.5,

P
path
m ≥

∞∑
t=0

(
m + t

m

)
µm+1 (1 − µ )t (1 − δ )m+t

≥ (µ (1 − δ ))m · µ ·
∞∑
t=0

(
m + t

m

)
((1 − µ ) (1 − δ ))t

≥ (µ (1 − δ ))m · µ ·
1

(1 − (1 − µ ) (1 − δ )))m+1

≥

(
µ (1 − δ )

δ + µ (1 − δ )

)m+1
.

□

Corollary A.7. The probability P startPath
m thatm nodes are reinfected along a path, such that no

node on them-length path is cured before they all become infected, and such that there is an infection
on the first time step, is lower bounded by µ ·

( µ (1−δ )
δ+µ (1−δ )

)m
.

Proof. Taking into account that the first time step is an infection:

P startPath
m ≥

∞∑
t=0

(
m − 1 + t
m − 1

)
µm+1 (1 − µ )t (1 − δ )m+t

≥ µ ·

(
µ (1 − δ )

δ + µ (1 − δ )

)m
.

□

Proposition A.8. Let T N
2r 4

be the random variable representing the time to cure half of the N
r 4 last

nodes. Then:

P
(
T N

2r 4
≤

N

4r 5δ

)
≤ e−

N
8r 5 .
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Proof. The difficulty here lies in the fact that we want to obtain exponential concentration
inequalities on a sum of geometric variables, which are unbounded. Therefore, we cannot directly
use a Chernoff’s bound. Following an idea from [6], we represent geometric variables as the sum
of Bernoulli variables. Each variable is then bounded, which makes the analysis possible.

Let X t
i be 1 if node i was cured at time t , and 0 otherwise. Let X t be r with probability δ , and 0

otherwise. We notice P(X t
i = 1) ≤ δ , and ∀t ,

∑N
i=1X

t
i ≤ r . By using Chernoff’s bound on a sum

of N
4r 5δ Bernoulli variables of parameter δ , we can therefore bound the probability that curing N

2r 4
nodes happens in a short time (here less than N

4r 5δ time):

P(T N
2r 4
≤

N

4r 5δ
) = P(

N
4r 5δ∑
t=1

N∑
i=1

X t
i ≥

N

2r 4
)

≤ P(

N
4r 5δ∑
t=1

X t ≥
N

2r 4
)

≤ P(

N
4r 5δ∑
t=1

X t

r
≥

N

2r 5
)

≤ P
*..
,

N
4r 5δ∑
t=1

X t

r
≥

N

4r 5δ
· δ · (1 + 1)

+//
-

≤ P
*..
,

N
4r 5δ∑
t=1

X t

r
≥ E



N
4r 5δ∑
t=1

X t

r


· (1 + 1)

+//
-

≤ e−
N
4r 5
·12

3

≤ e−
N

12r 5 .

□

Proposition A.9. Conditioned on reaching a cut of 3r in a minimal tree in less than 30 log(r )
τ time

steps, the probability of not infecting any nodes outside of the escape PNoOtherInfections is bounded by:

PNoOtherInfections ≤ e−
360 log2 (r )µ

τ

≤τ→0 e
−360 log2 (r ) .

Proof. For an infection to not be part of the Escape , it has to happen because of a node which
is either on the path to the root, or on the path to a minimal tree. As calculated before, there are
12 log(r ) such nodes, which all have at most one edge not on the path (the two others were used
either to get infected, or to infect the next node on the path). What’s more, each of these nodes
was infected for at most 30 log(r )

τ time steps. The probability of not infecting any node along those
edges during all these time steps is therefore:

PNoOtherInfections ≤
(
(1 − µ )12 log(r )

) 30 log(r )
τ

≤ (1 − µ )
360 log2 (r )

τ
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≤ e−
360 log2 (r )µ

τ .

As τ goes to 0:

PNoOtherInfections ≤ e−
360 log2 (r )µ

τ

≤τ→0 e
−360 log2 (r ) .

□

A.2.3 Moment generating function of the random walk.

Proposition A.10. There exists x∗ > 0 such that the Moment Generating Function (MGF) of Gt
evaluated at x∗ is 1.

Proof. Since Gt is a sum of independent random variables, and since the MGF of a Bernouilli
random variable of parameter p is equal toMGF (x ) = pex + (1 − p):

MGFGt (x ) = MGFCt (x ) ·MGFIt (x )

= (δex + (1 − δ ))r · (µe−x + (1 − µ ))
r 3
3

We can see that:

MGF (0) = 1, MGF ′(0) < 0, MGF (r ) →r→∞ ∞

Therefore, by the Intermediate Value Theorem:

∃x∗ > 0,MGF (x∗) = 0

There is no closed form solution for x∗, but we can get an approximation when τ → 0.
□

Proposition A.11. When τ → 0, we have a closed form solution: x∗ = log(r ) − log(3).

Proof. When τ → 0:

1 = MGFGt (x
∗) = (δex

∗

+ (1 − δ ))r · (µe−x
∗

+ (1 − µ ))
r 3
3

=τ→0 (rτe
x ∗ + (1 − rτ ))r · (τe−x

∗

+ (1 − τ ))
r 3
3

=τ→0 (1 + rτ (ex
∗

− 1))r (1 + τ (e−x
∗

− 1))
r 3
3

=τ→0 (1 + r 2τ (ex
∗

− 1)) (1 + τ
r 3

3
(e−x

∗

− 1))

=τ→0 1 + τ
(
r 2 (ex

∗

− 1) −
r 3

3
(1 − e−x

∗

)

)
=τ→0 1 + τ

(
r 2 · e−x

∗

(e2x
∗

− ex
∗

−
r · ex

∗

3
+
r

3
)

)
If we want to nullify the first order in τ , we need:

(ex
∗

)2 − (1 +
r

3
) (ex

∗

) +
r

3
= 0

This is a second order polynomial, which gives us the solution ex
∗

= 1 (trivial solution for x∗ = 0),
and ex ∗ = r

3 , which gives us a non-trivial solution:
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x∗ = log(r ) − log(3) > 0

□

A.3 Some calculus
A.3.1 monotonicity results.

Proposition A.12. The function k (x ) = x
1−e−rx is increasing in x. In particular, for all x ≤ 0, we

have k (x ) ≥ k (0) = 1
r .

Proof. x → x and x → 1
1−e−rx are both increasing functions of x , so k (x ) is also increasing.

□

B A POLICY ACHIEVING THE UPPER BOUND
The main contribution of this paper proves a lower bound on the budget in the Partial infor-
mation setting. We prove that for budget r = O (log(N )), there exists no strategy which allows
polynomial expected curing time, unless D (p | |q)/τ goes to infinity. Moreover, our result implies
that if D (p | |q)/τ = 0, then for budget r = O (poly(log(N ))), there exists no strategy which allows
polynomial expected curing time.

We now study the converse problem. In this section we exhibit a policy which:
• Does not require any knowledge of the state (works even in the Blind Curing setting);
• Achieves linear expected curing time;
• Needs r ∼ e

4
c · N c budget, for any c > 0.

B.1 Description of the policy
We consider the ordering O of the nodes given by a Depth First Search on a binary tree. We split
the graph into 3 sets: Asus, Ainf and Abuff . Intuitively, these sets respectively represent the set of
the nodes we believe are cured, the set of nodes we believe are infected, and the buffer zone in the
middle.

We run through the following algorithm. As we show in Section B.4, the probability that we fail
to cure the graph in one pass of the algorithm below (what we call one iteration), is at most 2/N ,
and hence the expected time to cure, given our budget, is linear.

To initialize each pass of the algorithm, we set t = 0, and also initialize the sets A0
sus = A0

buff = ∅,
A0
inf = V .

Every 1
τ time steps, we:

• move a node from Ainf to Abuff , following the ordering O
• remove all the nodes from Abuff which are at distance greater than c log(N ) from any node
of Ainf , and place them in Asus

Then, during 1
τ time steps, we:

• cure all the nodes of Abuff with constant budget c1;
• cure the new node with budget (1 + c2) log(N ), where c2 constant.

This gives a total budget of 2c log(N ) · c1 + c2 log(N ) = N c log(2) · c1 + c2 log(N ).
At time step t = N

τ , when A
N
τ
inf = ∅, we keep curing A

N
τ
buff for an additional c log(N )

τ time steps.
One pass through the set of actions described above is called an iteration. We show below

that the probability of failing to cure the entire graph in one iteration is bounded by 2/N , and
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hence we can cure the graph in linear expected time. Equivalently, in time γ · N , one can get a
(1 − ϵ )-probability guarantee that the graph is cured, for any ϵ > 0.

B.2 Properties of the policy

Proposition B.1. Every node of the graph spends at least c log(N )
τ time steps in Abuff .

Proof. We notice Ainf is connected at all time. Therefore, when a node i is removed from Ainf
and added to Abuff , it is at distance 1 from a node of Ainf . Every subsequent node transferred from
Ainf to Abuff can only increase the distance between i and Ainf by 1. Since a new node is transferred
every 1

τ time steps, and all the nodes at distance no greater than c log(N ) from Ainf are kept in
Abuff , every node i of the graph spends at least c log(N )

τ time steps in Abuff .
□

Proposition B.2. Let Tcured be the time it takes to cure the graph, and POneIteration be an lower
bound on the probability that the graph is cured in one iteration. Then:

E[Tcured] ≤
N + c log(N )

POneIteration
.

Proof. Tcured is stochastically dominated by an exponential variable with parameter POneIteration,
which in turn has expectation 1

POneIteration
. One iteration lasts exactly N

τ +
c log(N )

τ time steps, and one
time step lasts τ time, so an iteration lasts N + c log(N ) time.

□

B.3 Analysis
Definition B.3. We call an epoch 1

τ consecutive time steps.

If there is at least one infected node at the end of the policy, then either one of the following
events must have happen:
(1) One node was not cured when it entered the buffer zone, and then proceeds to make its way

to Asus.
(2) There was a path of infection from a node of Ainf to a node of Asus.

We calculate the probability of the two events above happening during one epoch:

B.3.1 Case 1: One node was not cured when it entered the buffer zone, and then proceeds to make
its way to Asus. The probability of this event is lower than the probability that one node was not
cured during one epoch when it entered the buffer zone:

P(Case1) ≤ (1 − (1 − e−(1+c2 ) log(N )τ ))
1
τ

≤ e−(1+c2 ) log(N )

≤
1

N 1+c2
.

B.3.2 Case 2: There was a path of infection from a node of Ainf to a node of Asus. In the case 2:
(1) One node ns of At0

buf needs to become infected at time step t0.
(2) One node ne of At0+t

sus becomes infected after t time steps.
(3) Every 1

τ time steps, the nodes of Asus can become closer to where the infected node by a
distance 1. Therefore, c log(N ) − ⌊τ · t⌋ − 1 additional infections need to happen along the
unique path between ns and ne .
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Let us calculate the probability p1 that b becomes infected at time t0, and then proceed to infect
c log(N ) − ⌊τ · t⌋ additional nodes along a cured path in t time steps, with the head of the infection
not being cured:

p1 = µ ·

(
t

max(0, c log(N ) − ⌊τ · t⌋ − 1)

)
µc log(N )−⌊τ ·t ⌋ (1 − β )t .

Let us now sum over all time steps t , to get the probability p2 that an infection reaches Asus with
exactly d infections, starting from one time step:

p2 = µ ·
∞∑

t= c log(N )
1+τ

(
t

max(0, c log(N ) − ⌊τ · t⌋ − 1)

)
µc log(N )−⌊τ ·t ⌋ (1 − β )t

≤ µ ·
∞∑

t= c log(N )
1+τ

(
t

c log(N ) − 1

)
(c log(N ))!

(c log(N ) − ⌊τ · t⌋)!
t !

(t + τ t )!

· µc log(N )−⌊τ ·t ⌋ (1 − β )t

≤ µ ·
∞∑

t= c log(N )
1+τ

(
t

c log(N ) − 1

) (
c log(N )

t + ⌊τ t⌋

) ⌊τ t ⌋
µc log(N )−⌊τ ·t ⌋ (1 − β )t

≤ µ ·
∞∑

t=c log(N )

(
t

c log(N ) − 1

)
µc log(N )−τ ·t (1 − β )t

= µ ·
∞∑
t ′=0

(
c log(N ) − 1 + t ′

c log(N ) − 1

)
µc log(N )

(
1 − β
µτ

)c log(N )−1+t ′

= µc log(N )+1 ·

(
1 − β
µτ

)c log(N )−1 1(
1 −

( 1−β
µτ

))c log(N )+1

∼τ→0 τ
c log(N )+1 · 1c log(N )−1 1(

1 −
( 1−c1 ·τ

τ τ
))c log(N )

+ o(τ )

∼τ→0
τ c log(N )+1

(c1τ )c log(N )
+ o(τ )

∼τ→0
τ

c
c log(N )
1

+ o(τ )

∼τ→0
τ

N c ·log(c1 )
+ o(τ ),

where we have used that
( c log(N )
t+ ⌊τ t ⌋

)
< 1, that µ < 1, so µ−⌊τ ·t ⌋ ≤ µ−τ ·t , that

∞∑
k=0

(
m + k

k

)
ak =

1
(1 − a)m+1

when |a | < 1, and that τ τ →τ→0 1.

Now, if we select a starting node ns and an end node ne , there is only one path between them
in a tree. Such an infection can start 1

τ times during one epoch. We can therefore apply a union
bound:
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P(Case2) ≤

1
τ∑

t0=1

∑
ns ,ne

p2

≤
N 2

τ
· p2

≤
1

N c ·log(c1 )−2
.

B.4 Combining the results for all time steps
At each epoch, the probability of failure is upper bounded by P(Case1) + P(Case2). The probability
of failing during one iteration, which lasts N + c log(N ) epochs, is therefore:

P(OneIterationFail) ≤ (N + c log(N )) · (P(Case1) + P(Case2))

≤ 2N · (
1

N c ·log(c1 )−2
+

1
N 1+c2

).

Therefore, if we choose c2 = 1, and c1 = e
4
c , we have:

P(OneIterationFail) ≤ 2N · (
1

N 4−2 +
1

N 1+1 )

≤
2
N
.

We have, therefore, an upper bound, as stated in Theorem 2.4. We repeat here, and complete the
proof.

Theorem 2.4. In the Blind Curing setting, for all c > 0, we can cure the binary tree in expected linear
time with budget Ω(e

4
c · N c ).

Proof. If we choose c2 = 1, and c1 = e
4
c , we have:

P(OneIterationFail) ≤ 2N · (
1

N 4−2 +
1

N 1+1 )

≤
2
N
.

Therefore, with budget e
4
c · N c + log(N ), for all c > 0:

E[Tcured] ≤
N + c log(N )

1 − 2
N

≤ 4N .

C NUMERICAL EXPERIMENTS
In this section, we add some numerical experiments to illustrate the difficulty of the problem. We
introduce two curing strategies: Naive Curing, which cures randomly a subset of nodes which
signal themselves as infected (they raise a flag), and the strategy from Section B, Blind Protection,
which prevents the infection from spreading by curing every node near the infected set. We hope
these two strategies can provide insight into the difficulty of curing the complete binary tree in our
model.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 31. Publication date: June 2018.



31:32 Jessica Hoffmann and Constantine Caramanis

Fig. 4. Time to cure as a function of the probability of error for the Naive Curing strategy.

It is important to understand that the results we present are strategy-specific, which means better
results could possibly be achieved with better strategies. Devising optimal strategies is however
outside of the scope of this work.

C.1 Impact of the lack of information
In this section, we illustrate the dramatic impact of the lack of information on the Naive Curing
strategy. In the following experiment, we consider a binary tree on 31 nodes. We use a budget
r = 16 > N

2 . If pϵ is the probability of error, at each time step, an infected node raises a flag with
probability 1 − pϵ , and a susceptible node raises a flag with probability pϵ . We set the size of a time
step to be τ = 0.1.
The results can be seen in Figure 4. The time to cure increases faster than exponentially with

the probability of error. We can see that even with 10% of error, it takes more than 3500 time steps
with budget r = N

2 on 31 nodes.

C.2 Impact of size of the graph
We now consider the strategy described in Appendix B. For the purpose of these experiments,
keeping the same notation as the previous section, we set c1 = 10 (this is the budget for every node
which we "protect"), and c2 = 1 (we cure any new node with budget (1 + c2) log(N )). We still have
τ = 0.1. For this experiment, we investigate the time it takes to cure the graph for a budget equal
to different exponents of the number of nodes.
The results are shown in Figure 5. As theory predicts, the time to cure increases more slowly

than 4 · N , where N is the number of nodes for budget r = O (N c ), for all c > 0 constant.
As a reminder, in the Blind Curing setting, it is impossible to cure the complete binary tree in

less than superpolynomial time for budget r = O (logα (N )), for all α > 0 constant.
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Fig. 5. Time to cure as a function of the number of nodes for the Blind Protection strategy. The plots are the
average of 20 runs.

Received February 2018; revised April 2018; accepted June 2018

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 31. Publication date: June 2018.


	Abstract
	1 Introduction
	1.1 Related Work and Background

	2 Model and main contributions
	2.1 The SI + curing model
	2.2 Partial Information/Blind Curing
	2.3 Main contributions

	3 Proof sketch
	3.1 Blind Curing setting
	3.2 Partial Information setting

	4 A Blind Curing result
	4.1 High-cut regime
	4.2 Closeness to the root
	4.3 Low-cut regime
	4.4 A Blind Curing result

	5 A Partial Information result
	5.1 Quantity of information available before the cut reaches 3r
	5.2 Detecting an infected node

	6 Conclusion
	References
	A Complementary results
	A.1 Properties of the binary tree
	A.2 Some probabilities
	A.3 Some calculus

	B A policy achieving the upper bound
	B.1 Description of the policy
	B.2 Properties of the policy
	B.3 Analysis
	B.4 Combining the results for all time steps

	C Numerical experiments
	C.1 Impact of the lack of information
	C.2 Impact of size of the graph

	Acknowledgments

